CPGD: Cadzow Plug-and-Play Gradient Descent for Generalised FRI

نویسندگان

چکیده

Finite rate of innovation (FRI) is a powerful reconstruction framework enabling the recovery sparse Dirac streams from uniform low-pass filtered samples. An extension this framework, called generalised FRI (genFRI), has been recently proposed for handling cases with arbitrary linear measurement models. In context, signal amounts to solving joint constrained optimisation problem, yielding estimates both Fourier series coefficients stream and its so-called annihilating filter, involved in regularisation term. This problem however highly non convex data. Moreover, numerical solver computationally intensive without convergence guarantee. work, we propose an implicit formulation genFRI problem. To end, leverage novel term which does not depend explicitly on unknown filter yet enforces sufficient structure solution stable recovery. The resulting still convex, but simpler since data less unknowns. We solve it by means provably convergent proximal gradient descent (PGD) method. Since step admit simple closed-form expression, inexact PGD method, coined as Cadzow plug-and-play (CPGD). latter approximates steps denoising, well-known denoising algorithm FRI. provide local fixed-point guarantees CPGD. Through extensive simulations, demonstrate superiority CPGD against state-of-the-art case time

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کنترل توان منابع تولید پراکنده با قابلیت plug and play

در دو دهه گذشته، مسائلی مانند گرمایش زمین و آلودگی هوا و از طرف دیگر افزایش تقاضا برای انرژی برق، دست اندرکاران و تصمیم گیرندگان صنعت برق را براین داشته که به سوی تولید انرژی برق از منابع انرژی تجدید پذیر مانند انرژی خورشیدی، بادی و همچنین تکنولوژی های جدیدتر مانند پیل های سوختی گام بردارند. در این پایان نامه کنترل توان منابع تولید پراکنده مورد بررسی قرار گرفته است. کنترل توان پیل سوختی متصل به...

Plug-and-play Features

We propose a feature construct for deening features, and use it to provide a plug-and-play framework for exploring feature interactions. Our approach to the feature interaction problem has the following characteristics: Features are treated as rst-class objects during the development phase; A method for integrating a feature into a system description is described. It allows features to override...

متن کامل

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

" Plug and Play " Systems for Quantum Cryptography

We present a time-multiplexed interferometer based on Faraday mirrors, and apply it to quantum key distribution. The interfering pulses follow exactly the same spatial path, ensuring very high stability and self balancing. Use of Faraday mirrors compensates automatically any birefringence effects and polarization dependent losses in the transmitting fiber. First experimental results show a frin...

متن کامل

NeuroML for plug and play neuronal modeling

Modern software systems for simulation, database access, visualisation and data analysis, supporting distributed, extensible, evolutionary development, are designed around a small core that loads plug-in components. We have designed such a system for the neurosciences using an XML-based protocol, NeuroML, to exchange information between components. NeuroML supports high-level descriptions of da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2021

ISSN: ['1053-587X', '1941-0476']

DOI: https://doi.org/10.1109/tsp.2020.3041089